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Abstract. In the standard model of the electroweak interactions the Higgs doublet is replaced by a complex
vector doublet and a real vector singlet. The gauge symmetry is broken dynamically by a mixed condensate
of the doublet and singlet vector fields. Gauge fields get their usual standard model masses by condensation.
The new vector matter fields become massive by their gauge invariant self-couplings. The model cannot
be renormalized perturbatively. Fermions are assigned to the gauge group in the usual manner. Fermion
masses are coming from a gauge invariant fermion–vector field interaction by a mixed condensate. The
Kobayashi–Maskawa description is unchanged. It is shown that from the new matter fields a large number
of spin-one particle pairs is expected at future high energy e+e− linear colliders of 500–1500 GeV.

A current description of electroweak symmetry breaking is
through a weakly interacting scalar doublet. Another pos-
sibility is a symmetry breaking system interacting strongly
with the longitudinal weak vector bosons which has been
realised in the DHT model [1] based on a chiral Lagrangian
approach. An alternative description of the strongly inter-
acting symmetry breaking system has been proposed in
the BESS model [2] through non-linear realizations. Top
quark condensation has also been suggested for describing
the electroweak symmetry breaking [3] leading to several
interesting studies e.g. [4]. Electroweak symmetry breaking
caused by the condensation of a vector field was studied
too [5]. Condensation of vector bosons in different scenarios
was considered in the literature [6]. Recently, little Higgs
models [7] attracted attention.

In the present notewe startwith the usual Lagrangian of
the standard model of electroweak interactions, but instead
of the scalar doublet two new matter fields are introduced.
One of them is a Y = 1, T = 1/2 doublet of complex
vector fields:

Bµ =
(
B

(+)
µ

B
(0)
µ

)
, (1)

the other is a real Y = 0, T = 0 vector field Cµ. This
extends our recent model [5] where only Bµ was present
with the condensation of B(0)

µ . Consequently, we are able
to describe a more complete symmetry breaking and to
generate fermion masses from a gauge invariant interaction
Lagrangian while the mass ratio of B(+) and B(0) does
not become fixed. The key point is the introduction of
a mixed Bµ–Cµ condensate together with suitable gauge
invariant interactions of the new matter fields. This leads
to non-vanishing standard model particle masses, as well
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as B, C particle masses. It turns out that altogether three
condensates emerge, but only one combination of them is
fixed by the Fermi coupling constant. The model should
be considered as a non-renormalizable low energy effective
one, having a cutoff scale of a few TeV. Its new particle
content is a charged vector boson pair and three neutral
vector bosons. As is shown, these can be pair produced in
e+e− annihilation, and at future linear colliders of 500–
1500 GeV they can provide a large number of events.

To build the model, in the Lagrangian of the standard
model the interactions of the scalar doublet are replaced
by the gauge invariant Lagrangian

LBC = − 1
2

(DµBν −DνBµ) (DµBν −DνBµ) (2)

− 1
2

(∂µCν − ∂νCµ) (∂µCν − ∂νCµ) − V (B,C) ,

where Dµ is the covariant derivative, gµν = + − −−, and
for the potential V (B,C) we assume

V (B,C) = λ1
(
BνB

ν
)2

+ λ2 (CνC
ν)2 + λ3BνB

νCµC
µ ,
(3)

depending only on the B-, C- lengths. Other quartic terms
would not change the argument. The λ1,2,3 are real and
from positivity

λ1 > 0 , λ2 > 0, 4λ1λ2 > λ2
3 . (4)

Mass terms to be generated are not introduced explicitly
in (3). Fermion–BC interactions are introduced later on.

To break the gauge symmetry, we assume a non-van-
ishing mixed condensate in the vacuum,

〈
BµCν

〉
= gµν (0, d) , (5)
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where the left-hand side could be rotated into (0, d), d �= 0,
respecting also electric charge conservation anddefining the
neutral and charged components in (1). By UY (1) d can
be chosen real. A real d respects also combined TCP and
C symmetries. By TCP -invariance (5) equals

〈
CνBµ

〉
. It

follows from (5) that the only non-vanishing mixed con-
densate is

〈B1µCν〉 =
√

2gµνd , (6)

with
B(0)

µ =
1√
2

(B1µ + iB2µ) , (7)

where Bjµ is real. Once there exists the mixed condensate,
B and C are assumed to condense separately:

〈
BµBν

〉
= gµνk1 , k1 �= 0 , (8)

〈CµCν〉 = gµνk3 , k3 �= 0 .

In more detail, assume that k1 originates from B
(0)
µ con-

densation,
〈
B(+)†

µ B(+)
ν

〉
= 0 ,

〈
B(0)†

µ B(0)
ν

〉
= gµνk1 . (9)

Equation (9) reproduces the pattern of gauge particle
masses [5]. All the condensates linear in B

(+)
µ vanish by

charge conservation. Finally, we assume in advance that
〈
B(0)

µ B(0)
ν

〉
=

〈
B(0)†

µ B(0)†
ν

〉
= gµν k2 . (10)

The point is that in generalB1µ andB2µ belong to different
masses, so that k2 �= 0. k1,2,3 are real and k1 < 0, k3 <
0, as shown by particle masses and simple models. The
condensates are of non-perturbative origin caused by the
strong interaction V (B,C). Among them only k1 is fixed
by contemporary phenomenology.

Mass terms are obtained in the linearized form of LBC

via condensates. The W± mass is determined by the to-
tal B-condensate, while the two neutral gauge field com-
binations are proportional to B

(+)†
µ B

(+)
ν and B

(0)†
µ B

(0)
ν ,

respectively. Therefore, the assumption (9) yields

mphoton = 0, mW =
g

2

√
−6k1, mZ =

g

2 cos θW

√
−6k1 .

(11)
Low energy phenomenology gives

k1 = −
(
6
√

2GF

)−1
, (−6k1)

1/2 = 246 GeV . (12)

B± and B2 get the following masses:

m2
± = −8λ1k1 − 4λ3k3 , (13)

m2
B2

= −10λ1k1 + 2λ1k2 − 4λ3k3 = m2
± + 2λ1(k2 − k1) .

For λ3,−k1,−k3 > 0, m2
B2

> m2
± > 0 since k2 > k1. The

B1–C sector is slightly more complicated; here one arrives

at the following bilinear combinations in the potential for
B1µ, Cµ:

V (B,C) → −m2
1

2
B1µB

1µ − m2
2

2
CνC

ν −m2
3B1µC

µ , (14)

with

−m2
1 = 10λ1k1 + 2λ1k2 + 4λ3k3 = −m2

B2
+ 4λ1k2 ,

−m2
2 = 24λ2k3 + 8λ3k1 , (15)

−m2
3 = 4

√
2λ3d .

Herem2
1 > 0 is k1+k2 < 0;m2

2 > 0 andm2
3 ≶ 0. A positive

potential in (14) requires

m2
1,m

2
2 > 0 , m2

1m
2
2 > m4

3 . (16)

Equation (14) shows that B1µ and Cµ are non-physical
fields; the mass eigenstates are defined by

Bfµ = cB1µ + sCµ ,

Cfµ = −sB1µ + cCµ , (17)

where c = cosφ, s = sinφ, and φ denotes the mixing angle
defined by

1
2

sin 2φ(m2
1 −m2

2) = cos 2φm2
3 . (18)

The physical masses are

m2
Bf

= c2m2
1 + s2m2

2 + 2csm2
3 ,

m2
Cf

= s2m1
1 + c2m2

2 − 2csm2
3 , (19)

whence

2m2
Bf ,Cf

= m2
1 +m2

2 ± m2
1 −m2

2

cos 2φ
. (20)

For (m2
1 −m2

2)/ cos 2φ > 0 (< 0) m2
Bf

> m2
Cf

> 0 (m2
Cf

>

m2
Bf

> 0). At vanishing mixing, m2
3 = 0, B1µ and Cµ

become independent having the massesm1 andm2; taking
k2 = 0 and omitting Cµ we recover the model of [5]. k2
shifts the real component field masses from the mass of the
imaginary part B2µ.

The particle spectrum of the B–C sector consists of
the spin-one B± and the three neutral spin-one particles
B2, Bf , Cf . Their masses are rather weakly restricted. Be-
side the gauge coupling constants and λ1, λ2, λ3, the model
has three basic condensates 〈ViµViν〉, Viµ = B2µ, Bfµ, Cfµ.
The k1, k2, k3, d condensates are built up from these as fol-
lows:

gµνd =
1√
2
cs (〈BfµBfν〉 − 〈CfµCfν〉) ,

gµνk1 =
1
2

{
c2 〈BfµBfν〉 + s2 〈CfµCfν〉 + 〈B2µB2ν〉 }

,

gµνk2 =
1
2

{
c2 〈BfµBfν〉 + s2 〈CfµCfν〉 − 〈B2µB2ν〉 }

,
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Fig. 1. cos−2 φ σ
(
e+e− → BfB2

)
versus

mBf at
√

s = 500 GeV and various mB2

gµνk3 = s2 〈BfµBfν〉 + c2 〈CfµCfν〉 . (21)

From (21) d can be written as

2
√

2 cot 2φ d = k1 + k2 − k3 . (22)

Turning to the dynamical fermion mass generation, we
add to the gauge vector and matter vector field Lagrangians
the usual fermion–gauge vector Lagrangian, aswell as a new
gauge invariant piece responsible for the fermion matter–
vector field interactions and in the usual notation this is
(for quarks)

gu
ijψiLujRB

C
ν C

ν + gd
ijψiLdjRBνc

ν + h.c. , (23)

ψiL =
(
ui

di

)
L

, BC
ν =

(
B

(0)†
ν

−B(+)†
ν

)
.

Clearly the mixed condensate provides fermion masses
and also the Kobayashi–Maskawa description is unchanged.
A typical fermion mass is

mf = −4gfd , (24)

and only gfd becomes fixed but mf1/mf2 = gf1/gf2 as
usual. If d is about k1 � G−1

F , then gf is a factor of
G

1/2
F weaker than the approximate standard model value

G
1/2
F [5].

As for the interactions of the new vector particles,
at present we confine ourselves only to a few remarks.
There exist ViVjV - , ViVjV V -type couplings with the gauge
bosons V = γ,W±, Z, f1f2ViVj-type interactions and
ViVjVkVl-type matter vector couplings always with an even
number ofVi. Depending on the mass hierarchy, one or more
Vi may be stable. Relatively large are the ViVjV couplings.

As an example we consider the Z–Bf–B2 coupling,

LI =
g

2 cos θW
cosφ · Zµ (25)

×
[
Bfν(∂µBν

2 − ∂νBµ
2 ) −B2ν(∂µBν

f − ∂νBµ
f )

]
.

Direct production of BfB2 pairs can be studied in high en-
ergy e+e− colliders, e+e− → Z∗ → BfB2. Assume in (24)
that ge− is very small; then the direct e+e− → BfB2 can
be neglected. From (25) we have for the total cross section

σ(e+e− → Z∗ → BfB2) (26)

=
g4 cos2 φ

3 · 4096 cos4 θW
1 + (4 sin2 θW − 1)2

m2
B2
m2

Bf
s2(s−M2

Z)2

× (
s− (mB2 +mBf

)2
)3/2 · (

s− (mBf
−mB2)

2)3/2

×
(
2s(m2

B2
+m2

Bf
) +m4

Bf
+m4

B2
+ 10m2

B2
m2

Bf

)
.

At asymptotic energies σ is proportional to 1/m2
B2

+
1/m2

Bf
. The mass and energy dependences of σ are shown

in Figs. 1 and 2. For example at
√
s= 500 GeV and with

an integrated luminosity of 10 fb−1 5700, 1900, 530 BfB2
pairs are expected formBf

= mB2= 100, 150, 200 GeV and
cos2 φ = 1/2. At

√
s = 1.5 TeV a higher mass range can be

tested, for cos2 φ = 1/2, a luminosity of 100 fb−1, we get
the large event numbers 62200, 14500, 5900, 1900, 530 for
mBf

= mB2= 100, 200, 300, 400, 500 GeV. One can show
that the B+B− production is a factor of cos2 2θW smaller
than (26) at equal masses and cos2 φ = 1.

The scale of the model can be estimated most eas-
ily applying perturbative unitarity by taking λ3k3 negli-
gible in (13); then λ1 is proportional to m2

+GF. Consider
B±B± → B±B± scattering with longitudinally polarized
particles and calculate the dominant contact graph contri-
bution [8] to the J = 0 partial-wave amplitude. Requiring
partial-wave unitarity, |Rea0| ≤ 1/2, one gets the maxi-
mum possible energy for 2m+ < Λ. In this way we have that
Λ is less than 2–2.5 TeV. This is in agreement with the re-
sult of [8]. The bound is similar also for theB±B± → B2B2
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scattering. In case of vanishing mixing and k2, a rough in-
terpretation of k1 with a cutoff free propagator shows that
m1, Λ ≤ 2–2.6 TeV for m1 < Λ.

In conclusion, a low energy dynamical symmetry break-
ing model of electroweak interactions based on matter vec-
tor field condensation is introduced. Mass generation is
arranged starting from gauge invariant Lagrangians. New
particles are all spin-one states, one charged pair and three
neutral particles having many interactions. The parame-
ter space of the model is larger than that of the one in [5];
therefore, we expect that the positive result of the S, T pa-
rameter analysis can be maintained. We hope to investigate
the model further in a future work.
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